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Abstract

Graph convolutional networks (GCNs) have been
successfully applied in node classification tasks of
network mining. However, most of these mod-
els based on neighborhood aggregation are usually
shallow and lack the “graph pooling” mechanism,
which prevents the model from obtaining adequate
global information. In order to increase the recep-
tive field, we propose a novel deep Hierarchical
Graph Convolutional Network (H-GCN) for semi-
supervised node classification. H-GCN first repeat-
edly aggregates structurally similar nodes to hyper-
nodes and then refines the coarsened graph to the
original to restore the representation for each node.
Instead of merely aggregating one- or two-hop
neighborhood information, the proposed coarsen-
ing procedure enlarges the receptive field for each
node, hence more global information can be cap-
tured. The proposed H-GCN model shows strong
empirical performance on various public bench-
mark graph datasets, outperforming state-of-the-art
methods and acquiring up to 5.9% performance im-
provement in terms of accuracy. In addition, when
only a few labeled samples are provided, our model
gains substantial improvements.

1 Introduction

Graphs nowadays become ubiquitous owing to the ability
to model complex systems such as social relationships, bi-
ological molecules, and publication citations. The problem
of classifying graph-structured data is fundamental in many
areas. Besides, since there is a tremendous amount of un-
labeled data in nature and labeling data is often expensive
and time-consuming, it is often challenging and crucial to
analyze graphs in a semi-supervised manner. For instance,
for semi-supervised node classification in citation networks,
where nodes denote articles and edges represent citation, the
task is to predict the label of every article with only a few
labeled data.
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As an efficient and effective approach to graph analysis,
network embedding has attracted a lot of research interests.
It aims to learn low-dimensional representations for nodes
whilst still preserving the topological structure and node fea-
ture attributes. Many methods have been proposed for net-
work embedding, which can be used in the node classification
task, such as DeepWalk [Perozzi er al., 2014] and node2vec
[Grover and Leskovec, 2016]. They convert the graph struc-
ture into sequences by performing random walks on the
graph. Then, the proximity between the nodes can be cap-
tured based on the co-occurrence statistics in these sequences.
But they are unsupervised algorithms and cannot perform
node classification tasks in an end-to-end fashion. Unlike pre-
vious random-walk-based approaches, employing neural net-
works on graphs has been studied extensively in recent years.
Using an information diffusion mechanism, the graph neural
network (GNN) model updates states of the nodes and prop-
agate them until a stable equilibrium [Scarselli ef al., 2009].
Both of the highly non-linear topological structure and node
attributes are fed into the GNN model to obtain the graph em-
bedding. Recently, there is an increasing research interest in
applying convolutional operations on the graph. These graph
convolutional networks (GCNs) [Kipf and Welling, 2017;
Veli¢kovic et al., 2018] are based on the neighborhood aggre-
gation scheme which generates node embedding by combin-
ing information from neighborhoods. Comparing with con-
ventional methods, GCNs achieve promising performance in
various graph analytical tasks such as node classification and
graph classification [Defferrard er al., 2016] and has shown
effective for many application domains, for instance, recom-
mendation [Wu et al., 2019; Cui et al., 2019], traffic fore-
casting [Yu er al., 2018], and action recognition [Yan et al.,
2018].

Nevertheless, GCN-based models are usually shallow and
lack the “graph pooling” mechanism, which restricts the scale
of the receptive field. For example, there are only two lay-
ers in GCN [Kipf and Welling, 2017]. As each graph con-
volutional layer acts as the approximation of aggregation on
the first-order neighbors, the two-layer GCN model only ag-
gregates information from two-hop neighborhoods for each
node. Because of the restricted receptive field, the model has
difficulty in obtaining adequate global information. How-
ever, it has been observed from the reported results [Kipf
and Welling, 2017] that simply adding more layers will de-
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Figure 1: The workflow of H-GCN. In this illustration, there are
seven layers with three coarsening layers, three symmetric refining
layers, and one output layer. Coarsening layer at level ¢ produces
graph G; 11 of n;y1 hyper-nodes with d-dimensional latent repre-
sentations, vice versa for refining layers.

grade the performance. As explained in [Li et al., 2018], each
GCN layer acts as a form of Laplacian smoothing in essence,
which makes the features of nodes in the same connected
component similar. Thereby, adding too many convolutional
layers will result in the output features over-smoothed and
make them indistinguishable. Meanwhile, deeper neural net-
works with more parameters are harder to train. Although
some recent methods [Chen et al., 2018; Xu et al., 2018;
Ying et al., 2018] try to get the global information through
deeper models, they are either unsupervised models or need
many training examples. As a result, they are still not ca-
pable of solving the semi-supervised node classification task
directly.

To this end, we propose a novel architecture of Hierarchical
Graph Convolutional Networks, H-GCN for brevity, for node
classification on graphs!. Inspired from the flourish of apply-
ing deep architectures and the pooling mechanism into im-
age classification tasks, we design a deep hierarchical model
with coarsening mechanisms. The H-GCN model increases
the receptive field of graph convolutions and can better cap-
ture global information. As illustrated in Figure 1, H-GCN
mainly consists of several coarsening layers and refining lay-
ers. For each coarsening layer, the graph convolutional oper-
ation is first conducted to learn node representations. Then,
a coarsening operation is performed to aggregate structurally
similar nodes into hyper-nodes. After the coarsening opera-
tion, each hyper-node represents a local structure of the origi-
nal graph, which can facilitate exploiting global structures on
the graph. Following coarsening layers, we apply symmetric
graph refining layers to restore the original graph structure for
node classification tasks. Such a hierarchical model manages
to comprehensively capture nodes’ information from local to
global perspectives, leading to better node representations.

The main contributions of this paper are twofold. Firstly,
to the best of our knowledge, it is the first work to design a
deep hierarchical model for the semi-supervised node classifi-
cation task. Compared to previous work, the proposed model

'"To make our results reproducible, all relevant source codes are
publicly available at https://github.com/CRIPAC-DIG/H-GCN.

consists of more layers with larger receptive fields, which is
able to obtain more global information through the coarsen-
ing and refining procedures. Secondly, we conduct extensive
experiments on a variety of public datasets and show that the
proposed method constantly outperforms other state-of-the-
art approaches. Notably, our model gains a considerable im-
provement over other approaches with very few labeled sam-
ples provided for each class.

2 Related Work

In this section, we review some previous work on graph con-
volutional networks for semi-supervised node classification,
hierarchical representation learning on graphs, and graph re-
duction algorithms.

Graph Convolutional Networks

In the past few years, there has been a surge of applying con-
volutions on graphs. These approaches are essentially based
on the neighborhood aggregation scheme and can be further
divided into two branches: spectral approaches and spatial
approaches.

The spectral approaches are based on the spectral graph
theory to define parameterized filters. Bruna ef al. (2014)
first define the convolutional operation in the Fourier domain.
However, its heavy computational burden limits the appli-
cation to large-scale graphs. In order to improve efficiency,
Defferrard et al. (2016) propose ChebNet to approximate the
K -polynomial filters by means of a Chebyshev expansion of
the graph Laplacian. Kipf and Welling (2017) further sim-
plify the ChebNet by truncating the Chebyshev polynomial to
the first-order neighborhood. DGCN [Zhuang and Ma, 2018]
uses random walks to construct a positive mutual information
matrix. Then, it utilizes that matrix along with the graph’s
adjacency matrix to encode both local consistency and global
consistency.

The spatial approaches generate node embedding by com-
bining the neighborhood information in the vertex domain.
MoNet [Monti et al., 2017] and SplineCNN [Fey et al., 2018]
integrate the local signals by designing a universe patch op-
erator. To generalize to unseen nodes in an inductive setting,
GraphSAGE [Hamilton et al., 2017] samples a fixed number
of neighbors and employs several aggregation functions, such
as concatenation, max-pooling, and LSTM aggregator. GAT
[Velickovié et al., 2018] introduces the attention mechanism
to model different influences of neighbors with learnable pa-
rameters. Gao er al. (2018) select a fixed number of neigh-
borhood nodes for each feature and enables the use of regular
convolutional operations on Euclidean spaces. However, the
above two branches of GCNs are usually shallow and cannot
obtain adequate global information as a consequence.

Hierarchical Representation Learning on Graphs

Some work has been proposed for learning hierarchical in-
formation on graphs. Chen et al. (2018) and Liang et al.
(2018) use a coarsening procedure to construct a coarsened
graph of smaller size and then employ unsupervised meth-
ods, such as DeepWalk [Perozzi et al., 2014] and node2vec
[Grover and Leskovec, 2016] to learn node embedding based
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on that coarsened graph. Then, they conduct a refining pro-
cedure to get the original graph embedding. However, their
two-stage methods are not capable of utilizing node attribute
information and can neither perform node classification task
in an end-to-end fashion. JK-Nets [Xu et al., 2018] proposes
general layer aggregation mechanisms to combine the out-
put representation in every GCN layer. However, it can only
propagate information across edges of the graph and are un-
able to aggregate information hierarchically. Therefore, the
hierarchical structure of the graph cannot be learned by JK-
Nets. To solve this problem, DiffPool [Ying et al., 2018]
proposes a pooling layer for graph embedding to reduce the
size by a differentiable network. As DiffPool is designed for
graph classification tasks, it cannot generate embedding for
every node in the graph; hence it cannot be directly applied
in node classification scenarios.

Graph Reduction

Many approaches have been proposed to reduce the graph
size without losing too much information, which facilitate
downstream network analysis tasks such as community dis-
covery and data summarization. There are two main classes
of methods that reduce the graph size: graph sampling and
graph coarsening. The first category is based on graph sam-
pling strategy [Papagelis er al., 2013; Hu and Lau, 2013;
Chen et al., 2017], which might lose key information dur-
ing the sampling process. The second category applies graph
coarsening strategies that collapse structure-similar nodes
into hyper-nodes to generate a series of increasingly coarser
graphs. The coarsening operation typically consists of two
steps, i.e. grouping and collapsing. At first, every node
is assigned to groups in a heuristic manner. Here a group
refers to a set of nodes that constitute a hyper-node. Then,
these groups are used to generate a coarser graph. For an
unmatched node, Hendrickson and Leland (1995) randomly
select one of its un-matched neighbors and merge these two
nodes. Karypis and Kumar (1998) merge the two un-matched
nodes by selecting those with the maximum weight edge.
LaSalle and Karypis (2015) use a secondary jump during
grouping.

However, these graph reduction approaches are usually
used in unsupervised scenarios, such as community detection
and graph partition. For semi-supervised node classification
tasks, existing graph reduction methods cannot be used di-
rectly, as they are not capable of learning complex attributive
and structural features of graphs. In this paper, H-GCN con-
ducts graph reduction for non-Euclidean geometry like the
pooling mechanism for Euclidean data. In this sense, our
work bridges graph reduction for unsupervised tasks to the
practical but more challenging semi-supervised node classifi-
cation problems.

3 The Proposed Method

3.1 Preliminaries

Notations and Problem Definition

For the input undirected graph G; = (V1, &), where V; and
&1 are respectively the set of n; nodes and e; edges, let
A; € R™*™ Dbe the adjacency matrix describing its edge

weights and X € R™ Xd1 pe the node feature matrix, where
dy is the dimension of the attributive features. We use edge
weights to indicate connection strengths between nodes. For
the H-GCN network, the graph fed into the i layer is repre-
sented as G; with n; nodes. The adjacency matrix and hidden
representation matrix of G; are represented by A; € R™i*"™:
and H; € R™ 9 respectively.

Since coarsening layers and refining layers are symmetri-
cal, A; is identical to A;_;; 1, where [ is the total number of
layers in the network. For example, in the seven-layer model
illustrated in Figure 1, G3 is the input graph for the third layer
and Gy is the resulting graph from the fourth layer. After one
coarsening operation and one refining operation, Gs and G5
share exactly the same topological structure A3. As nodes
will be assigned as a hyper-node, we define node weight as
the number of nodes contained in a hyper-node.

Given the labeled node set V;, containing m < ni nodes,
where each node v; € Vy, is associated with a label y; € ),
our objective is to predict labels of V\Vr.

Graph Convolutional Networks

Graph convolutional networks achieve promising generaliza-
tion in various tasks and our work is built upon the GCN mod-
ule. At layer i, taking graph adjacency matrix A; and hidden
representation matrix H; as input, each GCN module outputs
a hidden representation matrix G; € R™i%dit1 which is de-
scribed as:

G, = ReLU (D;%AZ—D;%H@) : (1)

where H; = X, ReLU(z) = max(0, z), adjacency matrix
with self-loop A; = A; + I, D; is the degree matrix of A;,
and 0; € R%*di+1 i a trainable weight matrix. For ease
of parameter tuning, we set output dimension d; = d for all
coarsening and refining layers throughout this paper.

3.2 The Overall Architecture

For a H-GCN network of [ layers, the i™ graph coarsening
layer first conducts a graph convolutional operation as for-
mulated in Eq. (1) and then aggregates structurally similar
nodes into hyper-nodes, producing a coarser graph G;; and
node embedding matrix H,;;; with fewer nodes. The cor-
responding adjacent matrix A;;1 and H; 1 will be fed into
the (i + 1)™ layer. Symmetrically, the graph refining layer
also performs a graph convolution at first and then refines
the coarsened graph to restore the finer graph structure. In
order to boost optimization in deeper networks, we add short-
cut connections [He et al., 2016] across each coarsened graph
and its corresponding refined part.

Since the topological structure of the graph changes be-
tween layers, we further introduce a node weight embed-
ding matrix S;, which transforms the number of nodes con-
tained in each hyper-node into real-valued vectors. Both of
the node weight embedding and H; will be fed into the i
layer. Besides, we add multiple channels by employing dif-
ferent GCNs to explore different feature subspaces.

The graph coarsening layers and refining layers altogether
integrate different levels of node features and thus avoid over-
smoothing during repeated neighborhood aggregation. Af-
ter the refining process, we obtain a node embedding matrix



H;_; € R™*4 where each row represents a node represen-
tation vector. In order to classify each node, we apply an
additional GCN module followed by a softmax classifier on
Hp_.

3.3 The Graph Coarsening Layer

Every graph coarsening layer consists of two steps, i.e. graph
convolution and graph coarsening. A GCN module is firstly
used to extract structural and attributive features by aggregat-
ing neighborhoods’ information as described in Eq. (1). For
the graph coarsening procedure, we design the following two
hybrid grouping strategies to assign nodes with similar struc-
tures into a hyper-node in the coarser graph. We first conduct
structural equivalence grouping, followed by structural simi-
larity grouping.

Structural equivalence grouping (SEG). If two nodes
share the same set of neighbors, they are considered to be
structurally equivalent. We then assign these two nodes to be
a hyper-node. For example, as illustrated in Figure 2, nodes B
and D are structurally equivalent, so these two nodes are allo-
cated as a hyper-node. We mark all these structurally equiva-
lent nodes and leave other nodes unmarked to avoid repetitive
grouping operation on nodes.

Structural similarity grouping (SSG). Then, we calculate
the structural similarity between the unmarked node pairs
(vj, vg) as the normalized connection strength s(v;, vy ):

s(vj,vk) = A
7T /D(oy) - D(or)’

where A;y, is the edge weight between v; and vy, and D(-) is
the node weight.

We iteratively take out an unmarked node v; and calcu-
late normalized connection strengths with all its unmarked
neighbors. After that, we select its neighbor node v, which
has the largest structural similarity to form a new hyper-node
and mark the two nodes. Particularly, if one node is left un-
marked and all of its immediate neighbors are marked, it will
be marked as well and constitutes a hyper-node by itself. For
example, in Figure 2, node pair (C, E) has the largest struc-
tural similarity, so they are grouped together to form a hyper-
node. After that, since only node A remains unmarked, it
constitutes a hyper-node by itself.

Please note that if we take out unmarked nodes in a dif-
ferent order, the resulting hyper-graph will be different. The
later we take a node out, the less its neighbors will be left
unmarked. So, for a node with fewer neighbors, it has fewer
probabilities to be grouped when it is taken out late. There-
fore, we take out the unmarked nodes in ascending order ac-
cording to the number of neighbors.

Using the above two grouping strategies, we are able to ac-
quire all the hyper-nodes. For one hyper-node v;, its edge
weight to v; is the summation over edge weights of v;’s
neighbor nodes contained in v;. The updated node weights
and edge weights will be used in Eq. (2) in the next coarsen-
ing layer.

In order to help restore the coarsened graph to origi-
nal graph, we preserve the grouping relationship between
nodes and their corresponding hyper-nodes in a matrix M; €
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Figure 2: The graph coarsening operation of a toy graph. Num-
bers indicate edge weights and nodes in shadow are hyper-nodes. In
SEG, node B and D share the same neighbors, so they are grouped
into a hyper-node. In SSG, node C and F are grouped because they
have the largest normalized connection weight. Node A constitutes
a hyper-node by itself since it remains unmarked.

R™*™+1_ Formally, at layer 4, entry m; in the grouping
matrix M; is calculated as:

) 1, ifwv;inG; is grouped into vy, in G 1;
Mjk = { 0, otherwise. 3)

An example of the coarsening operation on a toy graph is
given in Figure 2. Note that m;; = 1 in this illustration,
since node A constitutes its hyper-node by itself. Next, the
hidden node embedding matrix is determined as:

Hipn =M, - G;. 4)

In the end, we generate a coarser graph G; 1, whose adja-
cency matrix can be calculated as:

Ajpr = M- Ay - M;. (5)

The coarser graph G, 1 along with the resulting represen-
tation matrix H,; will be fed into the next layer as input.
The resulting node embedding to generate in each coarsening
layer will then be of lower resolution. The graph coarsening
procedure is summarized in Algorithm 1.

3.4 The Graph Refining Layer

To restore the original topological structure of the graph and
further facilitate node classification, we stack the same num-
bers of graph refining layers as coarsening layers. Like the
coarsening procedure, each refining layer contains two steps,
namely generating node embedding vectors and restoring
node representations.

To learn a hierarchical representation of nodes, a GCN is
employed at first. Since we have saved the grouping relation-
ship in the grouping matrix during the coarsening process, we
utilize M;_; to restore the refined node representation ma-
trix of layer . We further employ residual connections be-
tween the two corresponding coarsening and refining layers.
In summary, node representations are computed by:

H;y=M_; G+ G_;. (6)
3.5 Node Weight Embedding and Multiple

Channels

As depicted in Figure 2, since different hyper-nodes may have
different node weights, we assume such consequent node



Algorithm 1: The graph coarsening operation

Input: Graph G; and node representation H;
Output: Coarsened graph G, and node representation
it+1
1 Calculate GCN output G; according to Eq. (1)
2 Initialize all nodes as unmarked

/+ Structural equivalence grouping */
3 Group and mark node pairs having the same neighbors
/* Structural similarity grouping */

4 Sort all unmarked nodes in ascending order according to
the number of neighbors

5 repeat

6 for each unmarked node v; do

7 for each unmark node vy, adjacent to v; do

8 | Calculate s(vj, vy ) according to Eq. (2)

9 Group and mark the node pair (v;, vx,) having the

largest s(v;, vg)

10 until all nodes are marked

1 Update node weights and edge weights

12 Construct grouping matrix M, according to Eq. (3)

13 Calculate node representation H;; according to Eq. (4)
14 Construct coarsened graph G, 1 according to Eq. (5)

15 return gi+17 Hi+1

weights could reflect the hierarchical characteristics of coars-
ened graphs. In order to better capture the hierarchical in-
formation, we use the node weight embedding to supplement
information in H;. Here we transform the node weight into
real-valued vectors by looking up one randomly initialized
node weight embedding matrix V € RI7!*?_ where T is the
set of node weights and p is the dimension of the embed-
ding. We apply node weight embedding in every coarsening
and refining layer. For graph G;, we obtain its node weight
embedding S; € R"™*P by looking up V' according to the
node weight. For example, if one hyper-node contains three
nodes, the third row of V' will be selected as its node weight
embedding. We then concatenate H; and S; and the result-
ing (d + p)-dimensional matrix will be fed into the next GCN
layer subsequently.

Multi-channel mechanisms help explore features in dif-
ferent subspaces and H-GCN employs multiple channels on
GCN to obtain rich information jointly at each layer. After
obtained ¢ channels [G},G?, ..., G¢|, we perform weighted
average on these feature maps:

Gi=ij~Gg, (7)

where w; is a trainable weight of channel j.

3.6 The Output Layer

Finally, in the output layer /, we use a GCN with a softmax
classifier on H;_; to output probabilities of nodes:

H, = softmax (ReLU (Dl_ %AZD[%Hl,lal)) . ®

where 0, € R4Vl is a trainable weight matrix and H; €
R™*1Y| denotes the probabilities of nodes belonging to each
classy € ).

The loss function is defined as the cross-entropy of predic-
tions over the labeled nodes:

m |V

L=- ZZH(’% = y;)log P(hi, yi), )

i=1y=1

where I(-) is the indicator function, y; is the true label for v;,
h; is the prediction for labeled node v;, and P(h;,y;) is the
predicted probability that v; is of class y;.

3.7 Complexity Analysis and Model Comparison

In this section, we analyze the model complexity and com-
pare it with mainstream graph convolutional models, such as
GCN and GAT. .

For GCN, preprocessing matrices D; > A;D; * takes
O(n?), and the training process for each layer takes
O(|E|CF), where & is the edge set and C, F' are embedding
dimensions. For GAT, the masked attention over all nodes
requires O(n?) in the training process.

For H-GCN, the preprocessing takes O(n logn) to sort the
unmarked nodes and O(mn) for SSG, where m is the aver-
age number of neighborhoods. For training, the complexity
is also O(|E|CF). Therefore, H-GCN is as asymptotically
efficient as GCN and is more efficient than GAT.

[SIE

4 Experiments and Analysis

4.1 Experimental Settings

Datasets

For a comprehensive comparison with state-of-the-art meth-
ods, we use four widely-used datasets including three cita-
tion networks and one knowledge graph. We conduct semi-
supervised node classification task in the transductive setting.
The statistics of these datasets are summarized in Table 1. We
set the node weight and edge weight of the graph to one for all
four datasets. The dataset configuration follows the same set-
ting in [Yang et al., 2016; Kipf and Welling, 2017] for a fair
comparison. For citation networks, documents and citations
are treated as nodes and edges, respectively. For the knowl-
edge graph, each triplet (ej, r, e3) will be assigned with sep-
arate relation nodes 1 and r3 as (e1,71) and (ez, 72), where
e1 and es are entities and r is the relation between them. Dur-
ing training, only 20 labels per class are used for each citation
network and only one label per class is used for NELL during
training. Besides, 500 nodes in each dataset are selected ran-
domly as the validation set. We do not use the labels of the
validation set for model training.

Baseline Methods

To evaluate the performance of H-GCN, we compare our
method with the following representative methods:

» DeepWalk [Perozzi et al., 2014] generates the node em-
bedding via random walks in an unsupervised manner,
then nodes are classified by feeding the embedding vec-
tors into an SVM classifier.



Dataset Cora Citeseer Pubmed NELL

Type Citation network Knowledge graph
# Vertices 2,708 3,327 19,717 65,755

# Edges 5429 4,732 44,338 266,144

# Classes 7 6 3 210

# Features 1,433 3,703 500 5,414
Labeling rate  0.052  0.036 0.003 0.003

Table 1: Statistics of datasets used in experiments

Method Cora Citeseer Pubmed NELL
DeepWalk 67.2% 43.2% 65.3% 58.1%
Planetoid 75.7% 64.7% 77.2% 61.9%

GCN 81.5% 70.3% 79.0% 73.0%

GAT 83.0+£0.7% 725+0.7% 79.0+0.3% -
DGCN 83.5% 72.6% 79.3% 74.2%
H-GCN 845+05% 728+0.5% 79.8+04% 80.1+0.4%

Table 2: Results of node classification in terms of accuracy

« Planetoid [Yang er al., 2016] not only learns node em-
bedding but also predicts the context in graph. It also
leverages label information to build both transductive
and inductive formulations.

* GCN [Kipf and Welling, 2017] produces node embed-
ding vectors by truncating the Chebyshev polynomial to
the first-order neighborhoods.

* GAT [Velickovi¢ et al., 2018] generates node embed-
ding vectors by modeling the differences between the
node and its one-hop neighbors.

¢ DGCN [Zhuang and Ma, 2018] utilizes the graph adja-
cency matrix and the positive mutual information matrix
to encode both local consistency and global consistency.

Parameter Settings

We train our model using Adam optimizer with a learning
rate of 0.03 for 250 epochs. The dropout is applied to all
feature vectors with rates of 0.85. Besides, the {5 regular-
ization factor is set to 0.0007. Considering different scales
of datasets, we set the total number of layers [ to 9 for ci-
tation networks and 11 for the knowledge graph, and apply
four-channel GCNs in both coarsening and refining layers.

4.2 Node Classification Results

To demonstrate the overall performance of semi-supervised
node classification, we compare the proposed method with
other state-of-the-art methods. The performance in terms
of accuracy is shown in Table 2. The best performance of
each column is highlighted in boldface. The performance of
our proposed method is reported based on the average of 20
measurements. Note that running GAT on the NELL dataset
requires more than 64G memory; hence its performance on
NELL is not reported.

The results show that the proposed method consistently
outperforms other state-of-the-art methods, which verify the
effectiveness of the proposed coarsening and refining mecha-
nisms. Notably, compared with citation networks, H-GCN
surpasses other baselines by larger margins on the NELL
dataset. To be specific, the accuracy of H-GCN exceeds GCN

Method 20 15 10 5
GCN 790% 76.9% 72.2%  69.0%
GAT 790% 773% 754% 70.3%

DGCN  793% 774% 76.7%  70.1%

H-GCN 798% 793% 78.6% 76.5%

Table 3: Results of node classification in terms of accuracy on
Pubmed with labeled vertices varying from 20 per class to 5.

and DGCN by 7.1% and 5.9% on NELL dataset respectively.
We analyze the results as follows.

Regarding traditional random-walk-based algorithms such
as DeepWalk and Planetoid, their performance is relatively
poor. DeepWalk cannot model the attribute information,
which heavily restricts its performance. Though Planetoid
combines supervised information with an unsupervised loss,
there is information loss of graph structure during random
sampling. To avoid that problem, GCN and GAT employ
the neighborhood aggregation scheme to boost performance.
GAT outperforms GCN as it can model different relations
to different neighbors rather than with a pre-defined order.
DGCN further jointly models both local and global consis-
tency, yet its global consistency is still obtained through ran-
dom walks. As a result, the information in the graph structure
might lose in DGCN as well. On the contrary, the proposed
H-GCN manages to capture global information through dif-
ferent levels of convolutional layers and achieves the best re-
sults among all four datasets.

Besides, on the NELL dataset, there are fewer training
samples per class than in citation networks. Under such
circumstance, training nodes are further away from testing
nodes on average. The baseline models with the restricted
receptive field are unable to propagate the features and the
supervised information of the training nodes to other nodes
sufficiently. As a result, the proposed H-GCN with increased
receptive fields and deeper layers obtains more promising im-
provements than baselines.

4.3 Impact of Scale of Training Data

We suppose that a larger receptive field in the convolutional
model promotes the propagation of features and labels on
graphs. To verify the proposed H-GCN can get a larger re-
ceptive field, we reduce the number of training samples to
check if H-GCN still performs well when limited labeled data
is given. As in nature, there are plenty of unlabeled data; it is
also of great significance to train the model with limited la-
beled data. In this section, we conduct experiments with dif-
ferent numbers of labeled instances on the Pubmed dataset.
We vary the number of labeled nodes from 20 to 5 per class,
where the labeled data is randomly chosen from the original
training set. All parameters are the same as previously de-
scribed. The corresponding performance in terms of accuracy
is reported in Table 3.

From the table, it can be observed that our method outper-
form other baselines in all cases. With the number of labeled
data decreasing, our method obtains a more considerable mar-
gin over these baseline algorithms. Especially when only five
labeled nodes per class (= 0.08% labeling rate) are given,



Method Cora  Citeseer Pubmed NELL
H-GCN without coarsen- g 30 75, 7689,  75.9%
ing and refining layers
H-GCNwithoutnode ¢ 0 5 40, 7950,  79.6%
weight embeddings
H-GCN 84.5%  72.8% 79.8% 80.1%

Table 4: Results of the ablation study

the accuracy of H-GCN exceeds GCN, DGCN, and GAT by
7.5%, 6.4%, and 6.2% respectively. When the number of
training data decreases, it is more likely for an unlabeled node
to be further away from these labeled nodes. Only when the
receptive field is large enough can information from those
training nodes be captured. As the receptive field of GCN
and GAT does not exceed 2-hop neighborhoods, supervised
information contained in the training nodes cannot propagate
sufficiently to other nodes. Therefore, these baselines down-
grade considerably. However, owing to its larger receptive
field, the performance of H-GCN declines slightly when la-
beled data decreases dramatically. Overall, it is verified that
the proposed H-GCN with increased receptive fields is well-
suited when training data is extremely scarce and thereby is
of significant practical values.

4.4 Ablation Study

To verify the effectiveness of the proposed coarsening and
refining layers, we conduct ablation study on coarsening and
refining layers and node weight embeddings respectively in
this section. The results are shown in Table 4.

Coarsening and refining layers. We remove all coarsen-
ing and refining operations of H-GCN and compare its per-
formance with the original H-GCN. Different from simply
adding too many GCN layers, we preserve the short-cut con-
nection between the symmetric layers in the ablation study.
From the results, it is evident that the proposed H-GCN has
better performance compared to H-GCN without coarsening
mechanisms on all datasets. It can be verified that the coars-
ening and refining mechanisms contribute to the performance
improvements since they can obtain global information with
larger receptive fields.

Node weight embeddings. To study the impact of node
weight embeddings, we compare H-GCN with no node
weight embeddings used. It can be seen from results that the
model with node weight embeddings performs better, which
verifies the necessity to add this embedding vector in the node
embeddings.

4.5 Sensitivity Analysis

Last, we analyze hyper-parameter sensitivity. Specifically, we
investigate how different numbers of coarsening layers and
different numbers of channels will affect the results respec-
tively. The performance is reported in terms of accuracy on
all four datasets. While one parameter studied in the sensi-
tivity analysis is changed, other hyper-parameters remain the
same.

80.0% 2
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=6~ Cora —-©- Cora
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Figure 3: Results of H-GCN with varying layers and channels in
terms of accuracy.

Effects of coarsening layers. Since the coarsening layers
in our model control the granularity of the receptive field
enlargement, we experiment with one to eight coarsening
and symmetric refining layers, where the results are shown
in Figure 3(a). It is seen that the performance of H-GCN
achieves the best when there are four coarsening layers on
three citation networks and five on the knowledge graph. It
is suspected that, since less labeled nodes are supplied on
NELL than others, deeper layers and larger receptive fields
are needed. However, when adding too many coarsening lay-
ers, the performance drops due to overfitting.

Effects of channel numbers. Next, we investigate the im-
pact of different amounts of channels on the performance.
Multiple channels benefit the graph convolutional network
model, since they explore different feature subspaces, as
shown in Figure 3(b). From the figure, it can be found that the
performance improves with the number of channels increas-
ing until four channels, which demonstrates that more chan-
nels help capture accurate node features. Nevertheless, too
many channels will inevitably introduce redundant parame-
ters to the model, leading to overfitting as well.

5 Conclusion

In this paper, we have proposed a novel hierarchical graph
convolutional networks for the semi-supervised node classi-
fication task. The H-GCN model consists of coarsening lay-
ers and symmetric refining layers. By grouping structurally
similar nodes to hyper-nodes, our model can get a larger re-
ceptive field and enable sufficient information propagation.
Compared with other previous work, our proposed H-GCN
is deeper and can fully utilize both local and global infor-
mation. Comprehensive experiments have confirmed that the
proposed method consistently outperformed other state-of-
the-art methods. In particular, our method has achieved sub-
stantial gains over them in the case that labeled data is ex-
tremely scarce.
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